Issues in the Design of a Multistep Code
Fred T. Krogh'”’

Y Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A.

This paper summarizes things the author considers important from his past work, and
presents some new idcas for usc in the implementation of multistep methods. An effort has
been made to include material of interest to those of a theoretical bent, as well as to those
whose primary interest is in the implementation of methods.

Subject Classification: AMS (MOS): 72?

Keywords: Numcrical solution of ordinary diffcrential equations, multistep methods

1. Introduction

This paper is a summary of my views on the integration of differential
equations. I hope the following groups will find something of interest in what
follows.

For those interested in the implementation of multistep methods, a new
approach to starting should be of particular interest. Topics in my published
work mentioned here include the direct integration of higher order equations,
and a test for noise in the computation, as I feel these items have not had the
attention they deserve. ldeas not previously published on order selection and the
treatment of discontinuities and constraints are outlined. A new code I plan to
write which will support the integration of stiff and differential algebraic systems,
delay equations, and of course the efficient integration of nonstiff differential
equations is discussed briefly.

For those interested in one step methods, this paper offers the chance to spy
on some of the competition. It is generally agreed that multistep methods work

" The work described in this paper was carricd out by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National Acronautics and Space
Administration.

2 F.T. Krogh [Algorithmic Issues in the Design of @ Multistep Code

best if derivative evaluations are expensive or if there are complex output
requirements. Research on one step methods has both improved their efficiency,
and provided for more flexibility in output. Still, it will be difficult to support
with a one step code the wide class of problems discussed here to be supported
with a multistep code. And if one can write such a one step code it is liable to
suffer on integration overhead and code complexity to the point that it will have
lost the big advantages one step methods possess.

For those interested in theory, the next section is intended for you. In
addition, a few comments appear in bold face to attract your attention. I am
truly in awe at the theoretical results obtained concerning the numerical solution
of ode’s. But for an algorithm developer, these results have for the most part
been irrelevant. 1 have never had occasion to use your work, unless it was a
result you obtained in the process of writing a code. When needing a result of
a theoretical nature while developing a code, I have been on my own. Based on
a sample of two other code developers, this is probably the typical situation. As
one whose interests and talents are algorithmic rather than mathematical, 1
would like to see more help from those with the opposite inclinations.

Finally, I would like to comment on approaches to developing algorithms for
a code. Not counting the time spent coding or debugging, 1 have spent
approximately 30% of my time working on theory, 5% on the shotgun approach
of adjusting an algorithm based on results for a big set of test problems, and 65%
of my time with what 1 call the intelligent observer approach. This approach
involves solving a very simple problem for which one knows the desired behavior
based on theoretical considerations. Then watching closely what the algorithm

does concerning such things as estimating errors and selecting order and stepsize.
And asking myself over and over again, what would I do here knowing what I do

about the problem, and about the non-problem specific information which could
be made available to the program. When unexpected behavior is encountered,
I ask, "Why did that happen?" Because of these efforts, my programs can do a
better job of selecting order and stepsize than 1 can! This approach has also
worked well in developing algorithms for nonlinear least squares and quadrature.

2. Rigorous selection of stepsize and order is not a piece of cake

Perhaps the most important area where theory could be helpful is in the
selection of stepsize and order. But for multistep methods reality is more
complicated than the theory constructed to address these issues. When solving
quadrature problems, existing theory adequately addresses the issues. But with
quadrature problems the usual problems with instability do not arise.

It is useful to consider the simple test problem y* = Ay for constant complex
X. Although this simple problem does not capture all the complexity of real
problems, it seems to capture enough to be useful; and it illustrates the problems

F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code 3

with the theoretical approaches. 1assume the stepsize, h, is constant, even while
talking out of the other side of my mouth about changing it. As an algorist, and
as one who has spent much time looking at difference tables verifying that this
assumption seems useful, 1 have two excuses for such behavior. Perhaps you
mathematicians could do better. (That is, either in behavior or excuses.)

For the case above, multistep methods are characterized by having a principal
root, r,, and ¢,rp approximates the solution with order q+ 1, where q is the order
of the last difference used and c, is a constant. Unfortunately, they also have
extraneous roots which are introduced as a result of the difference equation
having a higher order than the differential equation. For all practical methods
I know of, the largest of these extraneous roots, r,, near the stability boundary
for a method has a negative real part. Accuracy considerations on the other
hand, limit the argument of r, to < 60°. This corresponds to only 6 samples per
period; 12 samples (30°) is probably more realistic.

Since the k™ backward difference of r" is r" (1 - 1/r)%, both error estimation
and order selection depend on expressions approximated by

Crp(1-1/r) + cri(1-1/r)~

Because of their arguments, the contribution of r, to the k™ difference decrease
with increasing k, while the opposite is true for the contribution of r,. Since, |c, |
< |e.| (if there is any relative accuracy at all), the magnitude of the differences
decreases at first, but ultimately increases. A variable order method selects the
order very near this turning point. Thus the quantities used for decision making
depend on both r, and r,, although the standard theory only applies to r,.
Although (1 - 1/r,)* is proportional to h¥, (1 - 1/r.)* will actually decrease with
increasing h since Re(r,) < 0, and |r,| increases with increasing h. Ultimately,
and quite quickly, this reduction in |1 - 1/r,|* is more than compensated for by
the increase in |r.|" Of course, if the lack of convergence in the differences is
due to round off error, an increase in h will lead to a smaller than expected
increase in the error, particularly if this larger stepsize results in an increase in
the order. Except for the comment on round off error, all said above about
increasing h, also applies to increasing the order. That is, an increase in the
order tends to make |r,| larger.

Of course changing stepsize or order will in effect change the value of c, as
well as the value of r,. More important, the complex numbers can’t be examined
directly. In a system of real equations, the complex quantities all get combined
in such a way that the result is real. Imagine for example trying to determine if
| pte*?| is an increasing function of k given only p* cos kg, for a few values of k.
More than one r, and/or r, complicates matters even more. That is, if one is still
interested in trying to treat this problem rigorously.

I have in fact observed differences not increasing as rapidly as expected after
a stepsize increase. And sometimes a questionable order increase is followed by

4 F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code

a clearly undesirable one. The cautious will claim this shows one should not
allow stepsize or order to change too frequently. But with such prudence, one
pays a price in performance when a problem should have just such rapid changes.
One is probably better off overall to make small mistakes in stepsize or order
selection, and then to correct mistakes as quickly as possible.

In the past 1 have selected order independently for different equations in the
belief that this would pay big dividends when a system of equations involves
equations with very different characteristics. As mentioned later, in my new
integrator users will be encouraged to partition their equations. Usually users
can do a decent job of this, and as a result 1 plan to use the same order for all
of the equations in a partition. Of course, this does not change the fact that
error estimates do not behave in the same way as actual local errors.

3. Features from the Past

Table 1 lists features in my variable order Adams code, DIVA [13]. This code
is essentially the same as a code finished in 1975, except for minor changes in the
algorithms and the addition of features requested since then. The main ideas in
the algorithms used are in [9]. A more accessible reference is [17]. However,
this latter reference does not include details for higher order equations or for
implementing the backward differentiation formulas, and does not give the most
efficient algorithm for computing interpolation coefficients.

Table 1

Features in DIVA

G-Stops -- Locating zcros of arbitrary functions of the solution.
Direct integration of sccond order systcms.

Saving the solution of later usc.

Internal diagnostic print, and print for help with debugging,
Support for integration of variational equations.

Flexibility in specifying output points.

Reverse communication is supported, but not required.
Flexible error control.

User can control stepsize and order.

Diagnosecs unrcasonable accuracy requests.

Low overhead compared to other variable order Adams mcthods.
Efficient integration over weak discontinuitics.

Jackson [4], examines a variety of methods proposed for computing with
divided differences or variants thereof, and concludes the algorithms in [9] are
best. Jackson and Sedgwick [5], examine the tradeoffs between using the

F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code 5

Lagrange, the Nordsiek, or the form used in [9] for the interpolating polynomial,
and conclude the last is to be preferred. In this paper they suggest using the
term "scaled" divided differences for what 1 have called "modified" divided
differences. 1 picked up the less descriptive term "modified" from a paper by
Blanch [1], which in fact uses a different definition. 1 plan to use the more
descriptive term "scaled" in the future.

All of the features in Table 1 have been used; some of them have been added
because of user requests. 1 would like to comment on a few of these features.

Allowing the direct integration of second order systems costs very little in the
code. The procedure for computing integration coefficients for a first order
system, computes in the process, coefficients for integrating higher order systems.
And of course one only needs to maintain half the number of difference tables,
so the integration overhead per equation is cut by a factor of almost 2. In the
case of implicit methods, one also saves on the linear algebra cost. There are
important classes of problems [11], where the direct integration of a second order
system requires about half the number of function evaluations required for
integrating the equivalent first order system. It should be noted that if the first
derivative of the solution is present in the expressions for the second derivatives,
it is possible for the direct integration to require more function evaluations.
Even in this case, the reduction in integration overhead is likely to make up for
the small number of extra function evaluations required in the worst case. The
error in second order systems is controlled by allowing the user to specify an
error tolerance only on the first derivative of the solution. This has worked well
in practice, and eliminates the possibility of inconsistent accuracy requests on
position and velocity. However, 1 know of no theoretical results indicating the
best strategy.

Diagnostic print is intended to aid in the identification of problems in the

algorithm or errors in the user’s problem formulation.
Debug print is intended primarily to help in tracking down user coding errors.
Instead of telling the user (as in the distant past) to print this and that, to track
down problems, the user is told to turn on this kind of output, at that level. From
experience with the former approach 1 know one gets poorly labeled output,
badly organized on the page, with not quite enough digits on certain key
variables, and some desired data missing!

The support for variational equations uses a method of the form PE,C,E,C,E,
where subscripts indicate the action is to apply only to the first or second set of
equations, and P, E, and C are used to denote predicting, evaluating the
derivatives and correcting respectively. Letters without subscripts imply the
action is to apply to both sets. Values of the solution for variables in the second
set have no influence on the derivatives of those in the first set. Thus in the case
of variational equations, the partials matrix need only be computed once per
step, such values being computed from the corrected values for the state. This
feature is quite easy to implement, and has a big payoff for some problems.

6 F.T. Krogh [Algorithmic Issues in the Design of a Mullistep Code

In [9], a method is described for detecting computational noise. This test does
not make assumptions about the precision with which derivatives are computed,
and as a result has found the following kinds of errors:

1. User thought all of his code was in double precision, when in fact certain
computations were done in single.

2. User thought computing attraction of sun and earth in double precision, while
computing the rest in single precision (to save time and space) would be
sufficient to get the desired accuracy. It usually was -- unless the spacecraft
got a little too close to the moon.

3. User did not realize computing with time based back at the time of Caesar
caused cancellation which made the desired accuracy impossible to obtain.

Tests based on the precision of the floating point arithmetic have no chance of
catching such errors, and these problems are of a nature where they could easily
go undetected. The test is based on examining the rate with which differences
get smaller, together with the place where the decrease ends. (If r, is so close
to 1 that differences start decreasing rapidly, then hx must be close to 0, and thus
r. must be small. If r, is small then lack of convergence must be due to noise.)
As given in [9), this test can give a false positive result, and so has been modified
to form a second difference of derivative values for very closely spaced values of
the independent variable. The diagnostic is only given when this difference is
sufficiently large. These two extra derivative evaluations are requested when the
test in [9] indicates problems, which happens very rarely. As part of the testing
process, the step is made easier to increase when it looks like noise might be
limiting accuracy, and thus the overall effect of the test is to make the code more
efficient when noise is (nearly) limiting precision. Perhaps some test for noise
could be placed on some kind of theoretical foundation? In the past I have not
tried to estimate Lipschitz constants which in turn could be used to estimate a
bound on the eigenvalues. Such estimates might prove useful both here and in
selecting stepsize and/or order.

When saving the solution, restarts require more storage to save the solution
because the low order of the difference tables requires saving information more
frequently. This became a problem when integrating trajectories for earth
satellites which pass in and out of the Earth’s shadow. 1t is easy to imagine such
concerns also arising in connection with integrating delay equations. Simply
ignoring discontinuities is very unreliable if one is using my code, while the
infamous John Butcher assures me that the one step code STRIDE is reliable in
this case. Thus, either the unreliability is common to multistep methods, rooted
in attempting to use invalid past information, or is due to DIVA (for good
reasons) not allowing the order to drop by more than one on a single step. But
even if ignoring discontinuities were reliable, doing so is still quite inefficient.

I have investigated two approaches to integrating over weak discontinuities.

F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code 7

Both require the user to identify the amount and the point of discontinuity, and
both assume information in the differences prior to the discontinuity are of some
use in predicting the differences after the discontinuity. The first approach
involves doing a Picard like starting procedure using the new definition for the
derivatives prior to the point of the discontinuity, and starting with the same
values for all of the differences except for the 0™. This procedure worked well
for small discontinuities, but performance degraded fairly rapidly with increasing
size of the discontinuity. More important, there are cases where it is not possible
to extend the new derivative evaluation to points prior to the discontinuity. Thus
my users had to do something quite special as the spacecraft moved from full sun
or shadow into partial shadow. (There is no problem extending the derivatives
when moving from partial shadow, as full sun or shadow is easy to model;
extending partial shadow is impossible.)

The second approach is more in the spirit of variable order methods. Upon
being informed of the discontinuity and its size, DIVA reduces the integration
order to the point where the largest order difference is larger than the size of the
discontinuity, and adjusts the stepsize accordingly. A little special logic is
required to get the solution on the first step past the discontinuity. Then for a
number of steps depending on the integration order, DIVA is extra careful in
terms of being a little more conservative in estimating errors, and being willing
to reduce the order more quickly. Overall the two approaches were about
equally good, although this last approach is distinctly better for large
discontinuities. Using the idea described later for starting the integration (i.e.
removing points just after the discontinuity before the point at the discontinuity)
should make this second approach work even better.

Thus frequent discontinuities do not necessarily give one step methods an
advantage as has been claimed. And if the discontinuities are frequent enough,
a variable order code running at first order would be impossible to beat!

4. Features for the Future

Table 2 lists the features I plan to put into a new integrator. More details can
be found in [14]. Other obligations, will probably delay the start of programming
till well into 1994.

Topics from Table 2 are discussed below. Constraints on the size of this paper
limit the detail with which these topics can be discussed.

Various aspects of how 1 plan to use the BDF’s for stiff equations can be
found in [15], [16], and [19]. Unlike most authors using the BDF’s, I do not
regard the method as one where one iterates until getting a solution to the
corrector. Rather, the method is semi-implicit using some fixed number of
iterations. The method uses the true variable coefficient value in computing the
residual for the equation to be solved. 1t is not true, as is frequently thought,
that such a method must factor the iteration matrix frequently. Results given in

8 F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code
[19] certainly suggest that this general approach is promising.

Table 2
Features Planned for a New Integrator
Everything in Tablc 1

Stiff Equations -- plan to uscd backward diffcrentiation formulas, BDF’s.
Differential Algebraic Systems, DAE’s (index < 1),

Dclay Equations.

Systems subject to constraints.

Support for changing the independent variable,

Support for using extra derivatives,

An improved starting procedure.

- A simplificd error control.

Provision for partitioning cquations to use diffcrent methods.

Automatic selection of method, Adams or BDF.

Provision for carrying additional precision in indcpendent and dependent variables.
Continuous order sclection?

Provision to get a solution depending continuously on the input parameters?
Provision for diffcrent stepsizes on different equations?

A new user interface

The restriction to index 1 on the DAE’s is not expected to unduly constrain
the range of applications, while greatly simplifying the code development. For
higher index problems, the user will need to reduce the index by differentiating
(some of) the equations, and solve a system consisting of differentiated equations
together with equations which have not been differentiated, subject to constraints
based on the differentiated equations prior to being differentiated. The feature
for imposing constraints on the solution is used to satisfy these constraints.

At the request of a user, a modification was made to my current integrator to
solve a delay equation. This problem involved delays from tidal forces
propagating through the moon, with the state to the left of the initial point to be
determined in such a way as to give a smooth solution. This initial state was
determined by initially assuming the values at the delayed time were the same
as at the current values, and doing a Picard like iteration to get this initial state.
Since many physical processes are characterized by smooth solutions, it is
reasonable to expect this kind of problem is common. It appears one step
methods would have difficulty treating such problems.

I first suggested modifying the numerical solution of a differential equation to
comply with constraints in [8], and a number of others have independently come
up with this idea. The basic idea is to project onto the constraint just after
correcting and just before computing the last derivative evaluation of the step.
The projection involves one iteration of solving an underdetermined system in

F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code 9

the linearized constraints. Thus, the cost is quite low. With just a single
constraint, the cost can be made even lower by moving onto the constraint in the
direction of the difference between the predicted and corrected values. (At least
this worked very well for the one problem on which it was tried!) This latter
procedure requires computing the value of the constraint after predicting and
correcting, instead of requiring the value of the constraint and it’s partial
derivatives after correcting. This technique was tried on a two-body problem
with eccentricity .5 over 21870 (lots!) of periods, constraining the energy to be
constant. Without the constraint errors grow quadratically with time; with it, the
error grows linearly. In comparison with the best results by Calvo and Sanz-
Serna [2] for symplectic integrators, DIVA without constraints took less than half
as many function values for a given accuracy, but could not get errors below 102,
where [2] gives results almost down to an accuracy of 10*. With constraints,
DIVA with an error 1/100 of those reported in [2], required less than 1/10 as
many function evaluations. Though this problem does not show symplectic
integrators at their best (because of the mild eccentricity), it certainly suggests
that the use of constraints with an existing integrator, offers better performance
than symplectic integrators when such a procedure is feasible. For those
interested in making comparisons, results with the constraint are given for DIVA
on this problem in the form (function evaluations, largest error through 21870
periods): (4372756, 1.22x10%), (5213486, 8.38x10°), (6147913, 3.54x10°), (7106722,
1.10x10%), and (8047023, 1.00x107). These results were obtained with input
tolerances of 10%, for k = 7, 8, ..., 11, and (X, X,’, Yoo Yo') = (.5, 0, 0, 3.).

There are many problems where a change in independent variable can make
a significant difference in the efficiency of an integration. An example is given
in [10], where a factor of 2 improvement is realized. For problems with very
rapid changes in the solution, people at TRW were using arc length as an
independent variable at least 25 years ago. But if a user wants to make such a
change in variable, getting output at the desired points can become much messier
to set up. 1 would like to encourage the user to make changes in the
independent variable when it is desirable, by setting up the code to use the G-
Stop feature on the solution for the original independent variable to get output
at the points where it is desired. Thus the user has little to do other than
defining dt/dr, where t is the old and 7 the new independent variable. Note that
the iteration to find the G-Stop for a particular value of t, only requires the
interpolations be done for that variable. The remaining interpolations can be
done after the desired value for r is obtained.

I experimented some with using extra derivatives in [6]. If one has an
integrator set up to solve arbitrary order differential equations directly, this
feature is quite easy to add. One treats the system as if it had order d+e where
d is the original order and e is the number of extra derivatives. Except, the user
provided values for derivatives from d to e-1 are used instead of the values
ordinarily computed by the integrator for an equation of order d+e. lLong ago

10 F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code

I felt the extra complexity was not worth the cost and thus integrators 1 have
written since have not had this feature. The expected development of convenient
software for automatic differentiation, and the chance that the use of extra
derivatives will frequently enable effective use of PEC mode when PECE would
otherwise be preferred, has prodded me into including this feature. The error
control here will be based on the d—1* derivative, not on the (d +e)—1* derivative.

The new approach to starting arose as a result of work on integrating past
discontinuities. The failure of one "great" idea could only be explained by the
extreme growth of rounding errors in the presence of a rapidly increasing
stepsize. Clearly the same problem arises when starting an integration with a
first order method. The problem is easy to see when working with scaled divided
differences. But, please note that the use of differences is not the source of the
difficulty. Assume k steps in the starting process with the order increased by 1
on each step. If the order is then to be held constant (or perhaps even reduced),
the usual procedure is to discard information from the most distant point, i.e. the
initial point. But observe that the initial point is the most accurate information
available, and that there is a great deal of cancellation in forming the difference
between the initial point and the point following. 1f the point just after the
starting point is removed, the shortest distance between two points is maximized,
thus reducing as much as possible the growth of roundoff error.

The easiest way to implement this starting procedure is probably to keep the
initial point as the base point of the integration until it is discarded. Thus after
getting values at t, (the current value of the independent variable) they are
inserted into the difference tables between t,_, and t,. The process for updating
the differences is a little different, but, except for the stepsize history, the
procedure for computing integration coefficients remains the same. This process
has the advantage of integrating from t, to t,, instead of from the t_, to t,.
Because of the way errors in the interpolating polynomial cancel, this is just as
accurate, and in fact will be slightly more accurate if some of the values
discarded early are not quite as accurate as they should be. During this process
one need only compute one derivative value per step. When the difference
between the t, and the t, closest to t,, is nearly as big as |t, - t,_,], it is time to
modify the difference tables by discarding the data at t,. This is also easy to do.
If a history is being saved for later interpolation of the solution, it should be
saved just before discarding the data for t,, Note that the usual starting
procedure requires more storage for saving the solution, since it must save low
order closely spaced difference tables near the starting point.

In the past I have tried to provide a way for the user to control the accuracy
by means of a single parameter. Ideally there would be a theoretical result such
as: given the information accessible to a code, this is the best error control to
use. Lacking such a result, an error relative to the change in the solution over
a single step looks good to me. To avoid problems with zero crossing an
exponential averaging technique is used. Thus for some o« (=3/4), use an error

F.T. Krogh | Algorithmic Issues in the Design of a Multistep Code 11

tolerance relative to ax(last used) + (1-a)x(current relative change).
Unfortunately, the starting stepsize at first order is abnormally small. Here one
would like to use the expected value for the stepsize assuming a more realistic
value for the integration order. This little problem has kept me from
implementing this procedure. I'm hoping the new starting procedure described
above will make this type of simplified error control feasible. The goal is not to
do the best possible thing, but to do at least as well as a user is likely to do when
he is uncertain about the nature of the error growth and the size of the solutions
in his problem.

My first paper on stiff equations, [7], advocated partitioning the equations to
reduce the size of the linear systems involved in getting a solution. The simple
minded approach suggested there for doing automatic partitioning is probably not
workable. A rough outline for a more sophisticated approach is given in [12].
But there are many cases where the person with the problem knows how
equations should be grouped so that it is appropriate to integrate all of the
equations in the group with the same method. Thus, for example, control
equations for keeping a spacecraft oriented belong in a different group than
those which model the external forces on the spacecraft. 1 believe software for
solving difficult problems should use all available help. The user interface
described in [14] attempts to encourage a user in this direction.

I have users who are interested in getting solutions pushing the accuracy
available with IEEE double precision format. One can pick up a little accuracy
by maintaining the independent and dependent variables in extra precision. 1
plan to offer such an option. This will require hand coding extra precision
addition only, which is quite simple. The basic idea goes back to Gill, [3]. (One
of my first programs (= 1960), and the only Runge-Kutta method I've written,
used this method coded in absolute hex on an ALWAC 1lII-E. Assembly
language, if even available then, didn’t allow all the tricks that were necessary!)

When selecting the integration order, particularly at high order, it is easy to
be at an order where everything is nicely stable, and getting further outside the
region of relative stability than is desirable with the order increased by 1. This
suggests one might use a method of "real" order. Let q be such a real order, and
let k be the integer part of q. The method being proposed is simply the usual
method of order k, with (q-k) times the first neglected term in both the
predictor and the corrector added to the usual formulas. Clearly such a method,
although of order k, will have properties between those for the method of order
k and the method of order k+1. Another reason for considering such an
algorithm is to open the possibility of getting a solution that varies continuously
as a function of the initial conditions or some parameter appearing in the
differential equation. This feature is useful when solving a boundary value
problem when one does not want to integrate variational equations to get
partials. Without this feature, one cannot get decent values for partial
derivatives by using difference approximations. 1 have only recently realized that

12 F.T. Krogh | Algorithmic Issues in the Design of a Multistep Code

getting this property when integrating a stiff equation will probably require
computing the Jacobian matrix and factoring the iteration matrix on every step.
One would probably be better off integrating variational equations. Thus, some
of my enthusiasm for using real values of the integration order has been
dampened. However, the idea seems of some interest, and is used in the next
section of this paper in investigating "optimal" formulas.

Multirate methods are those which allow different stepsizes to be used on
different equations. This option was originally specifically excluded because of
the code complexity involved in including it. Since then, two parties have been
interested in this feature, and I have kidded myself into believing that perhaps
the implementation isn’t too messy. 1 believe a key to making these methods
work is to use some kind of averaging to feed the contribution from the small
stepsize components into the derivatives computed for the large stepsize
components.

One aspect of the user interface is crucial. Whatever approach to a user
interface you use, try to make it extensible. 1 have modified an existing code
over a period of over 15 years, in the process adding significant features not in
the original design. Past use of the program was invalidated once to provide
better portability of saved solutions created on different computer systems. (It’s
hard to think of everything!) Since features could be added without invalidating
existing code, one version of the program was maintained, and everybody using
the code could make use of the latest version. Although the design is different,
the new integrator keeps this important characteristic. In particular, no matter
what kind of method used to solve the corrector equation when using an implicit
method, the same core code will be used. If one wants to use the latest sparse
solver, it should just be a matter of adjusting the user interface slightly for that
code, and using it.

5. What is an Optimal Formula?

Long ago there were efforts to improve the order or the accuracy of formulas,
without any consideration of stability. Then, there were efforts to improve
stability with only minimal consideration of accuracy. Of course, improving one
usually means damaging the other. As one wants more accuracy, it is best to use
more accurate formulas, sacrificing stability to get the accuracy, and vice versa.
Variable order methods, provide a means to pick the nearly best compromise
automatically. But this leaves open the question of just which variable order
formulas to use. Skeel [18], has shown it is possible to have a great deal of
freedom in the choice of formulas without sacrificing storage. The best choice
may indeed lie in such formulas. I have wondered for some time about doing
something less general, but significantly easier to implement,

The corrector formula for the Adams methods applied to first order systems,

E.T. Krogh [Algorithmic Issues in the Design of a Multistep Code 13

can be written as: y,,, = p,,; + hc (f(t,,1, Pas1) = Ph.1), Where y and p denote
corrected and predicted values, ¢ is a constant which depends on the method, f
is the derivative function, and p’,,, is the value predicted for the derivative by
extrapolating the polynomial interpolating past derivative values at the end of the
last step. Clearly there is freedom in choosing c, with little impact on the
complexity of the method. In the past 1 have selected ¢ so that the corrector
formula has order one greater than that of the predictor, primarily because using
a value for ¢ giving the Adams Moulton formula with the same order as the
predictor is not as stable for y’ = -y for predictor orders < 11.

The issue addressed here is how to decide one value of c¢ is better than
another, when a change in ¢ makes the formula more accurate and less stable or
vice versa. Since order selection ultimately depends on numbers actually used
in the computation, define the method to be stable if |r (ha)| < |r,(hx)|. That
is, use relative stability, relative to the principal root rather than to the true
solution. If this condition is violated, then ultimately a variable order method
will drop the order. The key to choosing the optimal value of ¢, is using a real
valued order as introduced earlier.

With a predictor "order" of q = k + p, 0<p <1, and free parameter q, the
method in backward difference form can be written

k-1
pnd = yn+hz ’ij}y"/'f p’ykvkyn/
j=0
k-1 !
/

I)ml = E vjyn/+ pvkyn/

j=0
You =Pyt h[(A-p)v, 4 p v, J(A+e) [f(,., P,.,.) D]
ynlwl = f(tnﬂ’yn»l) ’

where p = a = 0, corresponds to the usual procedure. For y’ = Xy this leads
to a polynomial of degree 2 in h), and degree k+1inr. Let r, and r, denote the
principal and the extraneous root of largest magnitude as before. Consider
[1-e™r (h),q,a) [

[ax |?
Ir.(hx,q,a) | - |rp(h)\, q,a) |~

E:

"

R

where E, the square of the relative error per step, is to be minimized subject to
R > 0. Suppose values of h), q, and o are such that R = 0. If this choice of a

is to be optimal for this q and h), then there must be no solution to the system

14 F.T. Krogh [Algorithmic Issues in the Design of a Multistep Code

O 50+ Esq < 0
Jda aq
.@6(1 + EBSQ < 0.
da aq

Setting the determinant of this system to 0, gives the condition for an optimal
formula, ‘

OF R _ GE R _,
da 98q dq da
R =0.

I have written a code to solve this problem for Adams formulas of arbitrary
order. This project has been set aside for now. But in trying to solve this system
near q=6, for given values of h), and unknowns a and q, there were either bugs
in my code or it doesn’t much matter how a is selected.

References

[1] Gertrude Blanch, On Modified Divided Differences I, Math. Comp. 8
(1954) 1-11.

[2) M.P. Calvo and J.M. Sanz-Serna, Variable steps for symplectic integrators
(Report 1991/3, Departamento de Matematica Aplicada y Computacién,
Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain, April
1991).

[3] S.A.Gill, A process for the step-by-step integration of differential equations
in an automatic digital computing machine, Proc. Cambridge Philos. Soc.,
47 (1951) 96-108.

[4] L.W. Jackson, The Computation of Coefficients of Variable Step Adams
Methods (University of Toronto, Dept. Comp. Science Technical Report
No. 94, June 1976).

[5] L.W.Jackson and A.E.Sedgwick, Vandermonde Matrices, Co-ordinate
Transformations, and Adams’ Method (University of Alberta, Dept. Comp.
Science Report No. TR77-5 September, 1977).

[6] F.T. Krogh, A Variable Step Variable Order Multistep Method for the
Numerical Solution of Ordinary Differential Equations (TRW Systems
Group, Redondo Beach, CA, Report No. 99900-6229-R000, May 1967).
(An effort has been made to cite some of my more obscure work, for those
who otherwise wouldn’t know of it. These papers are available on request.)

(7]

(8]
]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

F.T. Krogh |/ Algorithmic Issues in the Design of a Multistep Code 15

F.T. Krogh, The Numerical Integration of Stiff Differential Equations
(TRW Systems Group, Redondo Beach, CA, Report No. 99900-6573-R000,
March 1968)

F.T. Krogh, An Integrator Design (Jet Propulsion Laboratory, Pasadena,
CA, Technical Memorandum 33-479, May 1971).

F.T. Krogh, Algorithms for Changing the Step Size, SIAM J. Numer. Anal.
10 (1973) 949-965.

F.T. Krogh, Changing Stepsize in the Integration of Differential Equations
Using Modified Divided Differences, Proceedings of the Conference on the
Numerical Solution of Ordinary Differential Equations, October 1972, pp.
22-71. (Lecture Notes in Mathematics, Vol. 362, Springer-Verlag Berlin,
1974).

F.T. Krogh, Summary of Test Results with Variants of a Variable Order
Adams Method, pp. 277-281 of Numerical Methods for Differential Systems,
by L. Lapidus and W.E. Schiesser (Academic Press, New York, 1976).
E.T. Krogh, Notes on Partitioning in the Solution of Stiff Systems,
Proceedings International Conference on Stiff Computation, Vol. 11, April
12-14, 1982 Park City Utah. (Sponsored by the U.S. Air Force Office of
Scientific Research.)

F.T. Krogh, DIVA/SIVA, Chapter 14.1 of MATH77, Release 4.0 (Jet
Propulsion Laboratory, Pasadena, CA, JPL D-1341, Rev. C, May 1992).
(The entire MATH77 package is available for about $1000 from, COSMIC,
The University of Georgia, 382 East Broad St., Athens, GA 300602.)

F.T. Krogh, Design of a New General Purpose code, DIVI, for Solving
Initial Value Problems in Ordinary Differential Equations (Jet Propulsion
Laboratory Section 372, Internal Computing Memorandum 545, Pasadena,
CA 91109, April 1992). (Available via anonymous ftp, at "math.jpl.nasa.gov"
in "pub/divi".)

F.T. Krogh, and Kris Stewart, Implementation of Variable Step BDF
Methods for Stiff ODE’s, in "Numerical Methods for Solving Stiff Initial
Value Problems," Proceedings, Oberwolfach, 28.6 - 4.7.1981, Edited by
Germund Dahlquist and Rolf Jeltsch, August 1981.

F.T. Krogh, and Kris Stewart, Asymptotic (h - «) Absolute Stability for
BDFs Applied to Stiff Differential Equations, ACM Trans. on Math. Soft.
10 (1984) 45-57.

L.F. Shampine, and M.K. Gordon, Computer Solution of Ordinary
Differential Equations, The Initial Value Problern (W.H. Freeman and Co.,
San Francisco 1975).

R.D. Skeel, Construction of Variable-Stepsize Multistep Formulas, Math.
of Comp. 47 (1986) 503-510 and S45-S52.

Kris Stewart, Semi-Implicit Backward Differentiation Formulas (PhD
Dissertation, The University of New Mexico, Albuquerque, April 1987).

